IEEE Globecom Workshop on Communication, Computing and Networking in Cyber Physical Systems, Abu Dhabi, 2018

Machine Learning-based Occupancy Estimation using Multivariate Sensor Nodes

Adarsh Pal Singh Signal Processing and Communication Research Center IIIT Hyderabad

December 13, 2018

The Team

• Adarsh Pal Singh

4th Year, B. Tech. + MS by Research in Electronics and Communication

• Vivek Jain

4th Year, B. Tech. in Electronics and Communication

- Sachin Chaudhari
 Assistant Professor, IIIT Hyderabad
- Vishal Garg Professor, IIIT Hyderabad

NTNU

Norwegian University of Science and Technology

- Stefan Werner
 Professor, NTNU Gløshaugen
- Frank Alexander Kraemer Associate Professor, NTNU Gløshauger

Section I

Basics, Motivation and Contribution

In A Nutshell...

- The aim of this research project is to accurately estimate the number of occupants in a room using non-intrusive sensors only.
- Supervised machine learning models are used to gain inference about occupancy count from the deployed sensor nodes in the room.

Motivation

- In buildings, a large chunk of energy is spent on HVAC and lighting systems.
- Studies have demonstrated energy savings upto 30% in buildings where the occupancy pattern was known.
- Existing approaches of using camera, RFID, smart wearables and WiFi are either intrusive or privacy invasive.
- A lot of research has already been done in the field of occupancy detection.

Our Contributions

- A new dataset formed by deploying multiple multivariate sensor nodes in a lab.
- Accuracy and F1 score reported for different supervised ML models trained on various combinations of features, both homogeneous and heterogeneous.
- Data preprocessing and feature engineering techniques discussed. In particular, a new feature was derived from CO₂ readings.
- Analysis with PCA (unsupervised learning) done to see the performance of a reduced-dimensional dataset.

Section II

Experimental Setup and Data Collection

Experimental Setup

- A WSN with star topology was deployed in the lab.
- Data logging network with one Master and 7 Slave sensor nodes.
- Slaves transmit to sink every 30s.
- **S1 S4:** Temperature, light, sound sensors
- **S5:** CO₂ sensor
- S6 S7: PIR sensor

Architecture of Wireless Nodes

Sensor Data Sampling and Transmission

- Data from sensor nodes transmitted to sink every 30s.
- Temperature, Light and CO₂ sampled once in 30s by Arduino.
- For sound, continuous sampling done and the maximum peak-to-peak value achieved in 30s is sent.
- PIR polled every 2.5 seconds. For even a single motion event in 30s, a '1' is sent (else, '0' sent).
- Master appends data packets from each slave into corresponding .txt files after appending the time-stamp.

Section III

Data Preprocessing and Feature Engineering

Dataset Formation

• The data was collected continuously for four days => over 10,000 data points!

	A	В	С	D	E	F	G	Н	_	J	K	L	М	N	0	P	Q
1	Date	Time	Temp-1	Temp-2	Temp-3	Temp-4	Light-1	Light-2	Light-3	Light-4	Sound-1	Sound-2	Sound-3	Sound-4	CO2-5	PIR-6	PIR-7
2	2017/12/22	10:49:41	24.94	24.75	24.56	25.38	121	34	53	40	0.08	0.19	0.06	0.06	390	0	0
3	2017/12/22	10:50:12	24.94	24.75	24.56	25.44	121	33	53	40	0.93	0.05	0.06	0.06	390	0	0
4	2017/12/22	10:50:42	25	24.75	24.5	25.44	121	34	53	40	0.43	0.11	0.08	0.06	390	0	0
5	2017/12/22	10:51:13	25	24.75	24.56	25.44	121	34	53	40	0.41	0.1	0.1	0.09	390	0	0
6	2017/12/22	10:51:44	25	24.75	24.56	25.44	121	34	54	40	0.18	0.06	0.06	0.06	390	0	0
7	2017/12/22	10:52:14	25	24.81	24.56	25.44	121	34	54	40	0.13	0.06	0.06	0.07	390	0	0
8	2017/12/22	10:52:45	25	24.75	24.56	25.44	120	34	54	40	1.39	0.32	0.43	0.06	390	1	0
9	2017/12/22	10:53:15	25	24.81	24.56	25.44	121	34	54	41	0.09	0.06	0.09	0.05	390	0	0
10	2017/12/22	10:53:46	25	24.81	24.56	25.5	122	35	56	43	0.09	0.05	0.06	0.13	390	0	0
11	2017/12/22	10:54:17	25	24.81	24.56	25.5	101	34	57	43	3.84	0.64	0.48	0.39	390	1	1
12	2017/12/22	10:54:47	25.06	24.81	24.56	<mark>25.44</mark>	122	35	57	43	2.2	0.31	0.33	0.21	390	1	1
13	2017/12/22	10:55:18	25.06	24.81	24.56	25.5	123	35	57	44	0.42	0.13	0.14	0.09	390	1	0
14	2017/12/22	10:55:49	25.06	24.88	24.63	25.5	123	35	57	43	0.21	0.15	0.07	0.06	390	1	0
15	2017/12/22	10:56:19	25.06	24.81	24.63	25.56	123	35	57	44	1.66	0.21	0.12	0.09	390	1	0
16	2017/12/22	10:56:50	25.06	24.88	24.63	25.56	123	35	58	44	0.57	0.17	0.21	0.13	390	1	0
17	2017/12/22	10:57:21	25.06	24.88	24.63	25.56	123	35	58	44	0.14	0.17	0.15	0.06	390	1	0
18	2017/12/22	10:57:51	25.06	24.88	24.63	25.56	122	35	58	44	0.24	0.05	0.1	0.05	395	0	0
19	2017/12/22	10:58:22	25.06	24.81	24.63	25.56	122	35	57	44	0.25	0.07	0.07	0.05	395	1	0
20	2017/12/22	10:58:52	25.06	24.81	24.63	25.56	123	35	58	44	0.23	0.07	0.08	0.06	395	1	0
21	2017/12/22	10:59:23	25.06	24.88	24.63	25.5	123	35	58	45	0.13	0.06	0.06	0.06	395	0	0
22	2017/12/22	10:59:54	25.13	24.88	24.63	25.5	123	35	58	44	0.13	0.04	0.06	0.06	390	0	0
23	2017/12/22	11:00:24	25.06	24.88	24.63	25.56	123	35	57	44	0.15	0.05	0.06	0.06	395	0	0
24	2017/12/22	11:00:55	25.13	24.88	24.63	25.56	123	35	58	45	0.11	0.05	0.06	0.06	395	0	0

Dataset Formation

- 15 sensory features and no derived features.
- The raw dataset collected by the Master had missing values, time skews and no ground truth.

Feature Engineering

Preprocessing

Data Preprocessing

- A few seconds of variation was present between the arrival times of packets of different nodes. We merged the time-stamps within a given time frame into a common vector.
- Feature vectors with missing data were simply deleted.
- The manually logged ground truth of occupancy count was appended in the last column.

Feature Engineering

- CO₂ gives excellent deviation to the number of occupants.
- However, it takes several minutes for the readings to rise/fall to a steady state.
- A new feature was derived in the form of slope of CO₂ by which we can infer the rising or falling trend of CO₂ values.
- This was calculated by fitting a linear regression in a window of 25 points at each instance and calculating the slope of the line.

Section IV

Machine Learning Algorithms

Machine Learning Algorithms

Linear Discriminant Analysis (LDA)

- Assumes a multivariate Gaussian distribution with μ_k and Σ for class conditional probability P(X|y = k).
- The predictions are made using Bayes' rule-

$$P(y=k|X) = \frac{P(X|y=k)P(y=k)}{\sum_i P(X|y=i)P(y=i)}$$

- The class prior probability P(y = k) is learned from the training data along with μ_k and Σ .
- No tunable hyperparameter.

Quadratic Discriminant Analysis (QDA)

- Assumes a multivariate Gaussian distribution with μ_k and Σ_k for class conditional probability P(X|y = k).
- The predictions are made using Bayes' rule-

$$P(y=k|X) = \frac{P(X|y=k)P(y=k)}{\sum_i P(X|y=i)P(y=i)}$$

- The class prior probability P(y = k) is learned from the training data along with μ_k and Σ_k .
- No tunable hyperparameter.

Support Vector Machine (SVM)

Image Credits: https://en.wikipedia.org/wiki/Support_vector_machine

- No assumptions about the data.
- Each n-dimensional feature vector is a point in an n-dimensional feature space.
- SVM attempts to fit an optimal hyperplane between 2 classes with the help of support vectors.
- For k classes, k(k-1)/2 classifiers.
- C: penalty hyperparameter.
- Non-linear boundary with kernel.

Random Forest (RF)

- A decision tree is a tree-shaped structure in which each internal node represents a logical test on some feature and each leaf node represents an outcome class.
- RF is an ensemble of DTs grown on some part of the dataset.
- Classification and Regression Tree (CART) algorithm used for tree formation (training).
- Hyperparameters: n_trees, min_samples_split, max_depth.

Principal Component Analysis (PCA)

- PCA is a dimension-reducing unsupervised procedure in which a dataset having multiple and possibly correlated features is decomposed into a set of orthogonal components that capture the maximum amount of variance.
- This procedure is scale variant.
- The reduced dataset is then fitted with supervised models for performance evaluation.

Section V

Experiments and Results

Experimentation Logistics

- 10-fold cross validation.
- Accuracy and macro F1 score (necessary since dataset is skewed) reported.
- Scikit-learn in Python.
- Normalized training data used for SVM.
- Linear and RBF kernel used.
- Penalty hyperparameter tuned for each feature set.
- "n_trees" tuned for RF and kept at 30.
- "min_samples_split" tuned to prevent overfitting.
- Phase I: Homogeneous fusion.
- Phase II: Heterogeneous fusion.
- Phase III: Dimensionality reduction using PCA.

Phase I Results

Feature	Met-	LDA	QDA	SVM	SVM	RF
	ric			(Lin-	(RBF	
				ear))	
Temp{1,2,3,4}	Α	0.840	0.862	0.866	0.895	0.869
	F1	0.479	0.590	0.554	0.730	0.657
Light{1,2,3,4}	Α	0.973	0.919	0.973	0.973	0.972
	F1	0.928	0.854	0.929	0.927	0.925
Sound{1,2,3,4}	A	0.851	0.879	0.875	0.885	0.887
	F1	0.449	0.544	0.542	0.591	0.601
PIR{6,7}	A	0.869	0.869	0.870	0.870	0.870
	F1	0.474	0.474	0.466	0.460	0.460
CO_2	A	0.809	0.808	0.812	0.812	0.763
	F1	0.383	0.409	0.286	0.314	0.329
Slope	A	0.852	0.831	0.870	0.870	0.876
	F1	0.387	0.394	0.462	0.510	0.564
CO_2 , Slope	A	0.891	0.867	0.890	0.888	0.873
	F1	0.556	0.590	0.592	0.635	0.559

- CO₂ slope feature shows promising result.
- CO_2 + slope fusion further increases the performance.
- Light gives the best performance with an F1 score of 0.929 (Linear SVM).
- Temperature, second best with an F1 score of 0.73 (RBF SVM).

Phase II Results

Feature	Met-	LDA	QDA	SVM	SVM	RF
	ric			(Lin-	(RBF	
				ear))	
Temp $\{1,2,3,4\},\$	A	0.903	0.881	0.904	0.912	0.894
$\rm CO_2,$						
Slope	F1	0.653	0.680	0.667	0.750	0.684
Temp{1,2,3,4},	Α	0.920	0.908	0.933	0.924	0.918
$\rm CO_2,$						
Slope,	F1	0.735	0.749	0.793	0.782	0.731
Sound{1,2,3,4}						
Temp{1,2,3,4},	A	0.922	0.910	0.934	0.924	0.919
CO_2 , Slope,						
Sound $\{1, 2, 3, 4\},\$	F1	0.737	0.748	0.793	0.780	0.734
$PIR\{6,7\}$						
Temp{1,2,3,4},	A	0.980	0.957	0.982	0.984	0.978
CO_2 , Slope,						
Sound{1,2,3,4},	F1	0.946	0.911	0.948	0.953	0.933
PIR{6,7},						
Light{1,2,3,4}						

- One sensor type at a time added in a greedy manner (light considered only in the end).
- Complete dataset gives best performance with F1 score of 0.953 (RBF SVM).
- Without light, F1 score of ~0.8 achievable.

Confusion Matrices obtained in Phase II

	Predicted	Predicted	Predicted	Predicted
	0	1	2	3
Actual 0	8117	43	41	27
Actual 1	104	336	19	0
Actual 2	65	48	502	133
Actual 3	21	7	154	512

Linear SVM case for the complete dataset devoid of light features.

	Predicted	Predicted	Predicted	Predicted
	0	1	2	3
Actual 0	8196	1	3	28
Actual 1	0	453	6	0
Actual 2	0	0	712	36
Actual 3	10	1	67	616

SVM with RBF kernel case for the complete dataset.

Phase III Results

- PCA done for complete dataset devoid of light features.
- Just 4 components give 92% accuracy and 0.72 F1 with RBF SVM.

Section VI

Conclusion and Future Work

Conclusion

- A deployment scheme involving multiple multivariate sensor nodes for occupancy count estimation was proposed.
- Various methods to process large amounts of data obtained from the WSN discussed.
- The proposed slope of CO₂ feature improved the accuracy and F1 metric.
- The results show a promising 98.4% accuracy of occupancy estimation and a high F1 score of 0.953 using SVM with RBF kernel.
- An accuracy of 92% and a moderate F1 score of 0.72 achievable with just 4 PCA components without light features.

Future Work

- Extension of this model to large workspaces.
- Experiments with real-time extension of this model.
- Transfer learning approaches for faster training in multiple rooms.

