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In a Nutshell...
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The main goal of this project is to develop an 
egocentric hand segmentation model using 
RefineNet in Python.



Motivation for Hand 
Segmentation
1. Hand pose and configuration tell a lot 

about what we plan to do or what we 
pay attention to. 

2. Applications in robotics, 
human-machine interaction, computer 
vision, augmented reality, etc. 

3. Extracting hand regions in egocentric 
videos is a critical step for 
understanding fine motor skills such as 
hand-object manipulation and hand-eye 
coordination.
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ResNet
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Understanding ResNet
➔ Feedforward network with a single layer is sufficient to represent any 

function.
➔ However, the layer might be massive and the network is prone to 

overfitting the data.
➔ Common trend in research to make networks deeper!
➔ However, increasing network depth does not work by simply stacking 

layers together.
➔ Deep networks are hard to train because of the notorious vanishing 

gradient problem .
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➔ Another Problem: Performing optimization on huge parameter space 
and naively adding layers leads to higher training error (Degradation 
Problem).

➔ Residual networks allow training of such deep networks by constructing 
the network through modules called residual model.
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➔ The core idea of ResNet is introducing “identity shortcut connection” 
that skips one or more layers

➔ These parameterized gates control how much information is allowed to 
flow across the shortcut
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RefineNet
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Why RefineNet?
➔ RefineNet is a multi-path refinement network which exploits all 

the features at multiple levels along the down sampling path
➔ Authors performed off-the-shelf evaluation of leading semantic 

segmentation methods on the EgoHands dataset and found 
that RefineNet gives better results than other models. 

➔ On EgoHands dataset, RefineNet significantly outperformed the 
baseline.
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Understanding RefineNet
➔ Dilated convolutions are computationally expensive and take a 

lot of memory because they have to be applied on large number 
of high resolution feature maps.

➔ This hampers the computation of high-res predictions.
➔ RefineNet uses encoder-decoder architecture. 
➔ Encoder part is ResNet-101 blocks.
➔ Decoder has RefineNet blocks which concatenate/fuse high res 

features from encoder and low res features from previous 
RefineNet block.
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➔ RefineNet provides a generic means to fuse coarse high-level 
semantic features with finer-grained low-level features to 
generate high-resolution semantic feature maps

➔ It ensures that the gradient can be effortlessly propagated 
backwards through the network all the way to early low-level 
layers over long range residual connections, ensuring that the 
entire network can be trained end-to-end

12



13



14



15

Residual Convolution Unit (RCU)
➔ Adaptive Convolution set that fine tunes the pretrained ResNet 

weights for the task.
➔ Each Input is passed sequentially through 2 RCU where Batch 

Normalization is removed from the original ResNet.



Multi-Resolution Fusion
➔ All path inputs are then fused into a high-resolution feature map 

by the multi-resolution fusion block.
➔ First applies convolutions for input adaptation, which generates 

feature maps of the same feature dimension. 
➔ Up-samples all feature maps to the largest resolution of the 

inputs.
➔ Finally, all features maps are fused by summation.
➔ The input adaptation in this block also helps to re-scale the 

feature values appropriately along different paths.
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Chain Residual Pooling
➔ Aims to capture background context from a large image region.
➔ It is able to efficiently pool features with multiple window sizes 

and fuse them together using learnable weights.
➔ In particular, this component is built as a chain of multiple 

pooling blocks, each consisting of one max-pooling layer and 
one convolution layer.

➔ The current pooling block is able to re-use the result from the 
previous pooling operation and thus access the features from a 
large region without using a large pooling window.
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Output Convolutions
➔ The final step of each RefineNet block is another residual 

convolution unit (RCU).
➔ This results in a sequence of three RCUs between each block. To 

reflect this behavior in the last RefineNet-1 block, we place two 
additional RCUs before the final softmax prediction step.

➔ The goal here is to employ non-linearity operations on the 
multi-path fused feature maps to generate features for further 
processing or for final prediction.

➔ The feature dimension remains the same after going through 
this block.
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How is RefineNet used?
➔ RefineNet-Res101 pre-trained on Pascal Person-Part dataset 

used in all experiments. 
➔ A new classification layer added with 2 classes: hand and no 

hand.
➔ Fine-tuned the model on EgoHands, EYTH, GTEA, and HOF 

datasets.
➔ RefineNet-Res101 uses feature maps from ResNet101.
➔ After fine tuning, performed multi-scale evaluation for scales: 

[0.6, 0.8, 1.0] which gives consistently better results than single 
scale evaluation.
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Datasets
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PASCAL Person-Parts Dataset
➔ A subset of the Parts-dataset that is present with VOC 2010 

dataset.

➔ 24 different human body parts annotated!

➔ Mostly third person photos.

➔ Link: 
http://www.stat.ucla.edu/~xianjie.chen/pascal_part_dataset/pas
cal_part.html

21



EgoHands
➔ 48 videos recorded with Google glass.

➔ Videos are recorded in 3 different environments: office, 
courtyard and living room. 

➔ Each video has two actors doing one of the 4 activities: playing 
puzzle, cards, jenga or chess.

➔ Pixel-level ground truth for over 15000 hand instances.

➔ Link: http://vision.soic.indiana.edu/projects/egohands/
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EgoYouTubeHands (EYTH)
➔ Pixel-level hand annotations in real world images and/or videos 

obtained from YouTube.

➔ Users perform different activities and are interacting with 
others.

➔ This dataset has 2600 hand instances, with approx. 1800 
first-person hand instances and approx. 800 third-person 
hands.

➔ Link: 
https://github.com/aurooj/Hand-Segmentation-in-the-Wild
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Georgia Tech Egocentric Activity (GTEA)
➔ 7 daily activities performed by 4 subjects.

➔ Videos are collected in the same environment for the purpose of 
activity recognition.

➔ Does not capture social interactions and is collected under static 
illumination conditions annotated at 15 fps for 61 action 
classes.

➔ 663 images with pixel-level hand annotations.

➔ Link: http://www.cbi.gatech.edu/fpv/
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HandOverFace (HOF)
➔ Contains 300 images obtained from the web in which faces are 

occluded by hands.

➔ Useful to study how skin similarity can affect hand segmentation.

➔ Has images for people from different ethnicities, age, and gender. 

➔ Pixel-level annotations for hands along with the hand type: left or 
right.

➔ Link: https://github.com/aurooj/Hand-Segmentation-in-the-Wild
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Results
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Initial Testing with RefineNet
An example code written to test and get familiar with RefineNet in 
PyTorch. Pre-trained VOC weight file directly used.
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Codes
Problem: Pre-trained weight for VOC-parts dataset incompatible 
with PyTorch! Moreover, the parts dataset has .mat files for image 
labels which PyTorch’s RefineNet can’t use natively.

Dataset Cleaning: Script to process the Parts dataset. Converts .mat 
files to .jpg segmentations for all pictures containing “persons” => 
Person-parts dataset!
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Codes
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Training

1. Train on PersonParts (for Hands).
2. Fine tune for other datasets.
3. Learning 5e-5
4. Scales: [0.6, 0.8, 1.0]
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mIoU

PersonParts (Hand): 0.61
EgoHands: 0.662
EYTH: 0.492
GTEA: 0.637
HOF: 0.612

** On their respective train-test splits.
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https://docs.google.com/file/d/1TOq-uSHMT_LcRBJd9T9ozlj4B9IN7MEJ/preview
https://docs.google.com/file/d/15jF-vnQiFzFXdoV6th4n4E_Mr1qB_wMz/preview
https://docs.google.com/file/d/1YUYlbdycHqcziTzR-umX_rSb72Et7TYT/preview


Conclusion
▪ We got different results for fined tuned models on different 

datasets.
▪ Best result was from PersonParts & EgoHands based model
▪ HoF based model is useful to study similar appearance 

occlusions like hand-to-skin occlusions
▪ Cross-dataset testing revealed segmentation faults with other 

body parts like in the case of GTEA.

38



Failure Cases
▪ Motion Blur

▪ Occlusion
▪ Similar Appearance Occlusion
▪ Small Hands
▪ Lightning Conditions
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THANKS!
Any questions?
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