
Hand Segmentation Using
RefineNet (In Python)

Research Papers-
1. Analysis of Hand Segmentation in the Wild (CVPR 2018)
2. RefineNet: Multipath Refinement Networks for High-Resolution
Semantic Segmentation (CVPR 2017)

Github: https://github.com/adarsh1001/Hand_Segmentation_RefineNet

Adarsh Pal Singh
Ishan Bansal
Paawan Gupta

In a Nutshell...

2

The main goal of this project is to develop an
egocentric hand segmentation model using
RefineNet in Python.

Motivation for Hand
Segmentation
1. Hand pose and configuration tell a lot

about what we plan to do or what we
pay attention to.

2. Applications in robotics,
human-machine interaction, computer
vision, augmented reality, etc.

3. Extracting hand regions in egocentric
videos is a critical step for
understanding fine motor skills such as
hand-object manipulation and hand-eye
coordination.

3

Plan

4

Understanding
ResNet

Understanding
RefineNet

Getting Familiar
with the Datasets

Install PyTorch +
Dependencies &

Get Familiar

Make Dataset(s)
PyTorch Friendly

Code RefineNet
in PyTorch from

Scratch

Train RefineNet
on Person-Parts

Dataset

Fine-tune
RefineNet for 4

Standard Datasets
& Document

Results

ResNet

5

Understanding ResNet
➔ Feedforward network with a single layer is sufficient to represent any

function.
➔ However, the layer might be massive and the network is prone to

overfitting the data.
➔ Common trend in research to make networks deeper!
➔ However, increasing network depth does not work by simply stacking

layers together.
➔ Deep networks are hard to train because of the notorious vanishing

gradient problem .

6

➔ Another Problem: Performing optimization on huge parameter space
and naively adding layers leads to higher training error (Degradation
Problem).

➔ Residual networks allow training of such deep networks by constructing
the network through modules called residual model.

7

➔ The core idea of ResNet is introducing “identity shortcut connection”
that skips one or more layers

➔ These parameterized gates control how much information is allowed to
flow across the shortcut

8

RefineNet

9

Why RefineNet?
➔ RefineNet is a multi-path refinement network which exploits all

the features at multiple levels along the down sampling path
➔ Authors performed off-the-shelf evaluation of leading semantic

segmentation methods on the EgoHands dataset and found
that RefineNet gives better results than other models.

➔ On EgoHands dataset, RefineNet significantly outperformed the
baseline.

10

Understanding RefineNet
➔ Dilated convolutions are computationally expensive and take a

lot of memory because they have to be applied on large number
of high resolution feature maps.

➔ This hampers the computation of high-res predictions.
➔ RefineNet uses encoder-decoder architecture.
➔ Encoder part is ResNet-101 blocks.
➔ Decoder has RefineNet blocks which concatenate/fuse high res

features from encoder and low res features from previous
RefineNet block.

11

➔ RefineNet provides a generic means to fuse coarse high-level
semantic features with finer-grained low-level features to
generate high-resolution semantic feature maps

➔ It ensures that the gradient can be effortlessly propagated
backwards through the network all the way to early low-level
layers over long range residual connections, ensuring that the
entire network can be trained end-to-end

12

13

14

15

Residual Convolution Unit (RCU)
➔ Adaptive Convolution set that fine tunes the pretrained ResNet

weights for the task.
➔ Each Input is passed sequentially through 2 RCU where Batch

Normalization is removed from the original ResNet.

Multi-Resolution Fusion
➔ All path inputs are then fused into a high-resolution feature map

by the multi-resolution fusion block.
➔ First applies convolutions for input adaptation, which generates

feature maps of the same feature dimension.
➔ Up-samples all feature maps to the largest resolution of the

inputs.
➔ Finally, all features maps are fused by summation.
➔ The input adaptation in this block also helps to re-scale the

feature values appropriately along different paths.

16

Chain Residual Pooling
➔ Aims to capture background context from a large image region.
➔ It is able to efficiently pool features with multiple window sizes

and fuse them together using learnable weights.
➔ In particular, this component is built as a chain of multiple

pooling blocks, each consisting of one max-pooling layer and
one convolution layer.

➔ The current pooling block is able to re-use the result from the
previous pooling operation and thus access the features from a
large region without using a large pooling window.

17

Output Convolutions
➔ The final step of each RefineNet block is another residual

convolution unit (RCU).
➔ This results in a sequence of three RCUs between each block. To

reflect this behavior in the last RefineNet-1 block, we place two
additional RCUs before the final softmax prediction step.

➔ The goal here is to employ non-linearity operations on the
multi-path fused feature maps to generate features for further
processing or for final prediction.

➔ The feature dimension remains the same after going through
this block.

18

How is RefineNet used?
➔ RefineNet-Res101 pre-trained on Pascal Person-Part dataset

used in all experiments.
➔ A new classification layer added with 2 classes: hand and no

hand.
➔ Fine-tuned the model on EgoHands, EYTH, GTEA, and HOF

datasets.
➔ RefineNet-Res101 uses feature maps from ResNet101.
➔ After fine tuning, performed multi-scale evaluation for scales:

[0.6, 0.8, 1.0] which gives consistently better results than single
scale evaluation.

19

Datasets

20

PASCAL Person-Parts Dataset
➔ A subset of the Parts-dataset that is present with VOC 2010

dataset.

➔ 24 different human body parts annotated!

➔ Mostly third person photos.

➔ Link:
http://www.stat.ucla.edu/~xianjie.chen/pascal_part_dataset/pas
cal_part.html

21

EgoHands
➔ 48 videos recorded with Google glass.

➔ Videos are recorded in 3 different environments: office,
courtyard and living room.

➔ Each video has two actors doing one of the 4 activities: playing
puzzle, cards, jenga or chess.

➔ Pixel-level ground truth for over 15000 hand instances.

➔ Link: http://vision.soic.indiana.edu/projects/egohands/

22

EgoYouTubeHands (EYTH)
➔ Pixel-level hand annotations in real world images and/or videos

obtained from YouTube.

➔ Users perform different activities and are interacting with
others.

➔ This dataset has 2600 hand instances, with approx. 1800
first-person hand instances and approx. 800 third-person
hands.

➔ Link:
https://github.com/aurooj/Hand-Segmentation-in-the-Wild

23

Georgia Tech Egocentric Activity (GTEA)
➔ 7 daily activities performed by 4 subjects.

➔ Videos are collected in the same environment for the purpose of
activity recognition.

➔ Does not capture social interactions and is collected under static
illumination conditions annotated at 15 fps for 61 action
classes.

➔ 663 images with pixel-level hand annotations.

➔ Link: http://www.cbi.gatech.edu/fpv/

24

HandOverFace (HOF)
➔ Contains 300 images obtained from the web in which faces are

occluded by hands.

➔ Useful to study how skin similarity can affect hand segmentation.

➔ Has images for people from different ethnicities, age, and gender.

➔ Pixel-level annotations for hands along with the hand type: left or
right.

➔ Link: https://github.com/aurooj/Hand-Segmentation-in-the-Wild

25

26

Results

27

Initial Testing with RefineNet
An example code written to test and get familiar with RefineNet in
PyTorch. Pre-trained VOC weight file directly used.

28

Codes
Problem: Pre-trained weight for VOC-parts dataset incompatible
with PyTorch! Moreover, the parts dataset has .mat files for image
labels which PyTorch’s RefineNet can’t use natively.

Dataset Cleaning: Script to process the Parts dataset. Converts .mat
files to .jpg segmentations for all pictures containing “persons” =>
Person-parts dataset!

29

Codes

30

Training

1. Train on PersonParts (for Hands).
2. Fine tune for other datasets.
3. Learning 5e-5
4. Scales: [0.6, 0.8, 1.0]

31

mIoU

PersonParts (Hand): 0.61
EgoHands: 0.662
EYTH: 0.492
GTEA: 0.637
HOF: 0.612

** On their respective train-test splits.
32

33
Person Parts EgoHands

34
EYTH GTEA HOF

35 Person Parts EgoHands

36 EYTH GTEA HOF

37

https://docs.google.com/file/d/1TOq-uSHMT_LcRBJd9T9ozlj4B9IN7MEJ/preview
https://docs.google.com/file/d/15jF-vnQiFzFXdoV6th4n4E_Mr1qB_wMz/preview
https://docs.google.com/file/d/1YUYlbdycHqcziTzR-umX_rSb72Et7TYT/preview

Conclusion
▪ We got different results for fined tuned models on different

datasets.
▪ Best result was from PersonParts & EgoHands based model
▪ HoF based model is useful to study similar appearance

occlusions like hand-to-skin occlusions
▪ Cross-dataset testing revealed segmentation faults with other

body parts like in the case of GTEA.

38

Failure Cases
▪ Motion Blur

▪ Occlusion
▪ Similar Appearance Occlusion
▪ Small Hands
▪ Lightning Conditions

39

THANKS!
Any questions?

40

